Os plastos ou plastídeos é um grupo de organelas específicas de células vegetais, que possuem características semelhantes com as mitocôndrias como: membrana dupla, DNA próprio e origem endosimbionte.
Os plastos desenvolvem-se a partir de proplastídeos, que são organelas pequenas presentes nas células imaturas dos meristemas vegetais e desenvolvem-se de acordo com as necessidades da célula, surgindo diferentes tipos de plastos como: os cromoplastos (que contêm pigmentos), os leucoplastos (sem pigmento), etioplastos (que se desenvolvem na ausência de luz), amiloplastos (que acumulam amido como substância de reserva), proteoplastos (que armazenam proteína) e os oleoplastos (acumulam lipídeos).
Os cloroplastos são um tipo de cromoplastos que contém pigmento chamado clorofila, que são capazes de absorver a energia eletromagnética da luz solar e a convertem em energia química por um processo chamado fotossíntese.
As células vegetais e as algas verdes possuem um grande número de cloroplastos, de forma esférica ou ovóide, variando de tamanho de acordo com o tipo celular, e são bem maiores que as mitocôndrias.
As células vegetais e as algas verdes possuem um grande número de cloroplastos, de forma esférica ou ovóide, variando de tamanho de acordo com o tipo celular, e são bem maiores que as mitocôndrias.
Composição química dos cloroplastos:
Os cloroplastos são as organelas mais evidentes das células vegetais. Ela é composta por 50% de proteínas, 35% de lipídeos, 5% de clorofila, água e carotenóides. Parte das proteínas são sintetizadas pelo núcleo da célula, mas os lipídeos são sintetizados dentro da própria organela.
O número de cloroplastos é regulado pela célula. Existem células que contém apenas um cloroplasto, mais a maioria das células que realizam fotossíntese contém cerca de 40 a 200 cloroplastos, que se movimentam em função da intensidade de luz e da corrente citoplasmática.
Semelhantes às mitocôndrias, os cloroplastos são envoltos por duas membranas, uma externa altamente permeável, e uma interna que necessita de proteínas específicas para o transporte de metabólicos, e um espaço intermembrana.
O número de cloroplastos é regulado pela célula. Existem células que contém apenas um cloroplasto, mais a maioria das células que realizam fotossíntese contém cerca de 40 a 200 cloroplastos, que se movimentam em função da intensidade de luz e da corrente citoplasmática.
Semelhantes às mitocôndrias, os cloroplastos são envoltos por duas membranas, uma externa altamente permeável, e uma interna que necessita de proteínas específicas para o transporte de metabólicos, e um espaço intermembrana.
No interior da organela existe uma matriz amorfa chamada estroma que contém várias enzimas, grãos de amido, ribossomos e DNA.
No entanto, a membrana interna do cloroplasto não é dobrada em cristas e não contém uma cadeia transportadora de elétrons. Mergulhado no estroma, existe um sistema de membrana (bicamada) que forma um conjunto de sacos achatados em forma de discos chamados de membrana tilacóide (do grego thylakos, saco).
O conjunto de discos empilhados recebe o nome de granum. O lúmen da membrana tilacóide é chamado de espaço tilacóide. Na membrana exposta ao estroma se localizam as clorofilas que participam da fotossíntese.
Os pigmentos ligados a diferentes proteínas e lipídeos nas membranas dos tilacóides granares e estromáticos formam sistemas complexos de proteínas-clorofila denominados fotossistemas. Há dois tipos de fotossistemas:
Fotossistema I: localizado na região da membrana voltada para o estroma, são as menores partículas intramembranosas.
Fotossistema II: localizado em tilacóides granares, formado por partículas maiores.
Fotossistema I: localizado na região da membrana voltada para o estroma, são as menores partículas intramembranosas.
Fotossistema II: localizado em tilacóides granares, formado por partículas maiores.
As etapas da fotossíntese:
A fotossíntese ocorre em duas grandes etapas, que envolvem várias reações químicas: a primeira é a fase clara (também chamada de fotoquímica) e a segunda é a fase escura (também conhecida como fase química).
Em linhas gerais, os eventos principais da fotossíntese são a absorção da energia da luz pela clorofila; a redução de uma aceptor de elétrons chamado NADP, que passa a NADPH2; a formação de ATP e a síntese de glicose.
Em linhas gerais, os eventos principais da fotossíntese são a absorção da energia da luz pela clorofila; a redução de uma aceptor de elétrons chamado NADP, que passa a NADPH2; a formação de ATP e a síntese de glicose.
A fase escura da fotossíntese não precisa ocorrer no escuro. O que o nome quer indicar é que ela ocorre mesmo na ausência de luz – ela só precisa de ATP e NADH2 para ocorrer.
Fase clara ou fotoquímica: Quebra da água e liberação de oxigênio
Esta fase ocorre na membrana dos tilacóides e dela participam um complexo de pigmentos existente nos grana, aceptores de elétrons, moléculas de água e a luz. Como resultado desta fase temos a produção de oxigênio, ATP (a partir de ADP + Pi) e também a formação de uma substância chamada NADPH2;. Tanto o ATP quanto o NADPH2; serão utilizadas na fase escura.
Na fase clara, a luz penetra nos cloroplastos e atinge o complexo de pigmentos, ao mesmo tempo em que provoca alterações nas moléculas de água. De que maneira essa ação da luz resulta em produtos que podem ser utilizadas na segunda fase da fotossíntese?
Um dos acontecimentos marcantes da fase clara são as chamadas fotofosforilações cíclica e acíclica.
Na fotofosforilação cíclica, ao ser atingida pela luz do Sol, a molécula de clorofila libera elétrons. Esses elétrons são recolhidos por determinadas moléculas orgânicas chamadas aceptores de elétrons, que os enviam a uma cadeia de citocromos (substâncias associadas ao sistema fotossintetizante e que são assim chamadas por possuírem cor). Daí, os elétrons retornam à clorofila.
Na fotofosforilação cíclica, ao ser atingida pela luz do Sol, a molécula de clorofila libera elétrons. Esses elétrons são recolhidos por determinadas moléculas orgânicas chamadas aceptores de elétrons, que os enviam a uma cadeia de citocromos (substâncias associadas ao sistema fotossintetizante e que são assim chamadas por possuírem cor). Daí, os elétrons retornam à clorofila.
Você poderá perguntar: qual a vantagem desse ciclo de transporte de elétrons?
A resposta é que ao efetuar o retorno para a molécula de clorofila, a partir dos citocromos, os elétrons liberam energia, pois retornam aos seus níveis energéticos originais. E essa energia é aproveitada para a síntese de moléculas de ATP, que serão utilizadas na fase escura da fotossíntese.
Perceba que o caminho executado pelos elétrons é cíclico. Por esse motivo, costuma-se denominar essa via de fotofosforilação cíclica, devido à ocorrência de síntese de inúmeras moléculas de ATP em um processo cíclico, com a participação da luz e de moléculas de clorofila.
Ao mesmo tempo que isso ocorre, moléculas de água – ao serem atingidas pela luz do Sol – são “quebradas” (usa-se o termo “fotólise da água” para designar a quebra das moléculas de água) e liberam prótons (H+), elétrons (e-) e moléculas de oxigênio. Os prótons são captados por moléculas de NADP, que se convertem em NADPH2; moléculas de oxigênio são liberados para o meio; e os elétrons voltam para a clorofila, repondo aqueles que ela perdeu no início do processo.
Perceba que o caminho executado pelos elétrons é cíclico. Por esse motivo, costuma-se denominar essa via de fotofosforilação cíclica, devido à ocorrência de síntese de inúmeras moléculas de ATP em um processo cíclico, com a participação da luz e de moléculas de clorofila.
Ao mesmo tempo que isso ocorre, moléculas de água – ao serem atingidas pela luz do Sol – são “quebradas” (usa-se o termo “fotólise da água” para designar a quebra das moléculas de água) e liberam prótons (H+), elétrons (e-) e moléculas de oxigênio. Os prótons são captados por moléculas de NADP, que se convertem em NADPH2; moléculas de oxigênio são liberados para o meio; e os elétrons voltam para a clorofila, repondo aqueles que ela perdeu no início do processo.
A Etapa Fotoquímica da Fotossíntese
Também é chamada "fase clara" da fotossíntese, uma vez que a sua ocorrência é totalmente dependente da luz. Como se trata de uma etapa que conta com a participação das moléculas de clorofila, acontece no interior dos tilacóides, em cujas faces internas de suas membranas as moléculas desse pigmento fotossintetizante estão "ancoradas".
Nessa etapa, a clorofila, ao ser iluminada, perde elétrons, o que origina "vazios" na molécula. O destino dos elétrons perdidos e a reocupação desses vazios podem obedecer a 2 mecanismos distintos, chamados fotofosforilação cíclica e fotofosforilação acíclica.
No chamado fotossistema I, predomina a clorofila a. Essa, ao ser iluminada, perde um par de elétrons excitados (ricos em energia). Estabelece-se, na molécula da clorofila, um "vazio" de elétrons. O par de elétrons é recolhido por uma série de citocromos, substâncias que aceitam elétrons adicionais, tornando-se instáveis e transferindo esses elétrons para outras moléculas.
À medida que passam pela cadeia de citocromos, os elétrons vão gradativamente perdendo energia, que é empregada na fosforilação (produção de ATP pela união de mais um grupo de fosfato a uma molécula de ADP). Como essa fosforilação é possível graças à energia luminosa, captada pelos elétrons da clorofila, é chamada fotofosforilação.
Após a passagem pela cadeia de citocromos, os elétrons retornam à molécula da clorofila, ocupando o "vazio" que haviam deixado. Como os elétrons retornam para a clorofila, o processo é cíclico.À medida que passam pela cadeia de citocromos, os elétrons vão gradativamente perdendo energia, que é empregada na fosforilação (produção de ATP pela união de mais um grupo de fosfato a uma molécula de ADP). Como essa fosforilação é possível graças à energia luminosa, captada pelos elétrons da clorofila, é chamada fotofosforilação.
B - Fotofosforilação acíclica
Esse mecanismo emprega dois sistemas fotossintetizantes: o fotossistema I e o fotossistema II. No fotossistema I, predomina a clorofila a, enquanto no fotossistema II, predomina a clorofila b.
A clorofila a, iluminada, perde um par de elétrons ativados, recolhidos por um aceptor especial, a ferridoxina. Ao mesmo tempo, a clorofila b, excitada pela luz, perde um par de elétrons que, depois de atravessarem uma cadeia de citrocromos, ocupa o "vazio" deixado na molécula da clorofila a. Durante a passagem desses elétrons pela cadeia de citocromos, há liberação de energia e produção de ATP (fosforilação). Como o "vazio de elétrons" da clorofila a não é preenchido pelos mesmos elétrons que saíram dessa molécula, o mecanismo é chamado fotofosforilação acíclica.
Esse mecanismo emprega dois sistemas fotossintetizantes: o fotossistema I e o fotossistema II. No fotossistema I, predomina a clorofila a, enquanto no fotossistema II, predomina a clorofila b.
A clorofila a, iluminada, perde um par de elétrons ativados, recolhidos por um aceptor especial, a ferridoxina. Ao mesmo tempo, a clorofila b, excitada pela luz, perde um par de elétrons que, depois de atravessarem uma cadeia de citrocromos, ocupa o "vazio" deixado na molécula da clorofila a. Durante a passagem desses elétrons pela cadeia de citocromos, há liberação de energia e produção de ATP (fosforilação). Como o "vazio de elétrons" da clorofila a não é preenchido pelos mesmos elétrons que saíram dessa molécula, o mecanismo é chamado fotofosforilação acíclica.
No interior dos cloroplastos, a água é decomposta na presença da luz. Essa reação é a fotólise da água. (ou reação de Hill).
Dos produtos da fotólise da água, os elétrons vão ocupar os "vazios" deixados pela perda de elétrons pela clorofila b. Os prótons H+, juntamente com os elétrons perdidos pela clorofila a, irão transformar o NADP (nicotinamida-adenina-dinucleotídeo fosfato) em NADPH. Ao mesmo tempo, oxigênio é liberado. Esse é um aspecto importante da fotossíntese: todo o oxigênio gerado no processo provém da fotólise da água.
Os seres fotossintetizantes utilizam a água como fonte de átomos de hidrogênio para a redução do NADP. Esses átomos de hidrogênio são posteriormente empregados na redução do CO2 até carboidrato. A equação geral do processo é a seguinte:
O valor n corresponde, geralmente, a seis, o que leva à formação de glicose (C6H12O6). Entretanto, como todo oxigênio liberado vem da água, a equação deve ser corrigida para:
Dessa forma, pode-se explicar a origem de uma quantidade 2n de átomos de oxigênio a partir de uma quantidade de 2n moléculas de água (H2O).
Fase escura ou química: Produção de Glicose
Nessa fase, a energia contida nos ATP e os hidrogênios dos NADPH2, serão utilizados para a construção de moléculas de glicose. A síntese de glicose ocorre durante um complexo ciclo de reações (chamado ciclo das pentoses ou ciclo de Calvin-Benson), do qual participam vários compostos simples.
Durante o ciclo, moléculas de CO2 unem-se umas as outras formando cadeias carbônicas que levam à produção de glicose. A energia necessária para o estabelecimento das ligações químicas ricas em energia é proveniente do ATP e os hidrogênio que promoverão a redução dos CO2 são fornecidos pelos NADPH2.
Veja com mais detalhes o ciclo de Calvin
O Ciclo de Calvin
O ciclo começa com a reação de uma molécula de CO2 com um açúcar de cinco carbonos conhecido como ribulose difosfato catalisada pela enzima rubisco (ribulose bifosfato carboxilase/oxigenase, RuBP), uma das mais abundantes proteínas presentes no reino vegetal.
Forma-se, então, um composto instável de seis carbonos, que logo se quebra em duas moléculas de três carbonos (2 moléculas de ácido 3-fosfoglicérico ou 3-fosfoglicerato, conhecidas como PGA). O ciclo prossegue até que no final, é produzida uma molécula de glicose e é regenerada a molécula de ribulose difosfato.
Forma-se, então, um composto instável de seis carbonos, que logo se quebra em duas moléculas de três carbonos (2 moléculas de ácido 3-fosfoglicérico ou 3-fosfoglicerato, conhecidas como PGA). O ciclo prossegue até que no final, é produzida uma molécula de glicose e é regenerada a molécula de ribulose difosfato.
Note, porém, que para o ciclo ter sentido lógico, é preciso admitir a reação de seis moléculas de CO2 com seis moléculas de ribulose difosfato, resultando em uma molécula de glicose e a regeneração de outras seis moléculas de ribulose difosfato.
A redução do CO2 é feita a partir do fornecimento de hidrogênios pelo NADH2 e a energia é fornecida pelo ATP. Lembre-se que essas duas substâncias foram produzidas na fase clara.
O esquema apresentado é uma simplificação do ciclo de Clavin: na verdade, as reações desse ciclo se parecem com as que ocorrem na glicólise, só que em sentido inverso.
É correto admitir, também, que o ciclo origina unidades do tipo CH2O, que poderão ser canalizadas para a síntese de glicose, sacarose, amido e, inclusive, aminoácidos, ácidos graxos e glicerol.
Por: Herald Reis
Fonte: Só Biologia
Fonte: Só Biologia
Nenhum comentário:
Postar um comentário